

#### LA-UR-18-24283

Approved for public release; distribution is unlimited.

Title: Using Discrete Fracture Network Model in Understanding LTDE-SD Field

Experiment

Author(s): Makedonska, Nataliia

Viswanathan, Hari S.

Karra, Satish

Intended for: Annual meeting on Spent Fuel and Waste Science Technologies,

2018-05-22/2018-05-24 (Las Vegas, Nevada, United States)

Issued: 2019-10-07 (rev.1)



# **Spent Fuel and Waste Science and Technology**

# **Using Discrete Fracture Network Model in Understanding LTDE-SD Field Experiment**

Hari S. Viswanathan, Nataliia Makedonska, Satish Karra
Computational Earth Science Group
Los Alamos National Laboratory

SFWST Annual Working Group Meeting
Las Vegas, Nevada
May 22-24, 2018

#### **Motivation**

#### Penetration Profile in Long-Term Diffusion Experiment



### LANL Modeling Approach:

Include micro-structure directly into a high fidelity simulation using discrete fracture network model. Tracer penetrates into the solid continuum sample core through micro-fractured damage zone.

#### **Fracture Network Generation**

- Domain size is 5cm × 5cm × 5cm; total volume 125 cm<sup>3</sup>.
- All fractures size follow Power Law distribution, where smallest fracture length is 1 mm and longest fracture length is 10 mm.
- All fractures in the DFN are connected and provide a connected path through fractures for transport.

DFN input parameters (Äspö characteristics for the fracture data)

| Set | Trend | Plunge | Карра | $R_{_{Min}}$ | R<br>Max | Alpha | P <sub>32</sub> |  |
|-----|-------|--------|-------|--------------|----------|-------|-----------------|--|
| 1   | 280   | 20     | 10    | 0.0005       | 0.005    | 2.6   | 750             |  |
| 2   | 20    | 10     | 15    | 0.0005       | 0.005    | 2.6   | 1000            |  |
| 3   | 120   | 50     | 10    | 0.0005       | 0.005    | 2.6   | 500             |  |

Fracture Intensity is varied in vertical direction to generate different DFN configurations of a sample, which is:

- 1. Micro-fractured originally
- 2. Deformed at a surface and micro-fractured originally
- 3. Deformed at a surface and kept solid at a core

# **Three DFN Configurations:**

1. DFN of high uniform micro-fracture intensity



2. DFN of high
micro-fracture
intensity at a surface
of a sample (top) and
decreased P<sub>32</sub>
at a core of a sample.



Var: Permeability\_X



May 23, 2018

# **Three DFN Configurations:**

3. DFN of significantly 2. DFN of high 1. DFN of high uniform low intensity at a core micro-fracture micro-fracture intensity of a sample intensity at a surface Var: Permeability\_X of a sample (top) and decreased P<sub>32</sub> at a core of a sample.

Var: Permeability\_X

1.183e-12 **Perform Particle Tracking Simulations** 

## **Time Domain Random Walk (TDRW)**

$$T=T_{adv}+\left[rac{\phi\sqrt{D_e}}{b}T_{adv}
ight]^2 egin{array}{c} \phi - matrix \ porosity, \ \phi=0.001 \ D_e - diffusion \ coefficient \ [m^2/s] \ b - fracture \ aperture, \ b(R) \ [m] \ r - random \ number \ (0,1) \end{array}$$

# Travel Time = Time Advection + Time Diffusion

Minimize Advection: Decrease Pressure Gradient (1 Pa)

**Emphasize Diffusion:** Increase Diffusion Coefficient (up to 10<sup>-2</sup> m<sup>2</sup>/s)

#### **Generate Penetration Profile**



# **DFN Configuration 1**



# **DFN Configuration 2**



# **DFN Configuration 3**











#### Conclusion

- Micro fractures play an important role in tracer movement through the sample
- Including advection into transport simulations helps to achieve better fit to the experimental penetration profile

# **Questions?**